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Climate anomalies, such as floods and droughts, as well as gradual temperature changes
have been shown to adversely affect economies and societies. Although studies find that
climate change might increase global inequality by widening disparities across countries,
its effects on within-country income distribution have been little investigated, as has the
role of rainfall anomalies. Here, we show that extreme levels of precipitation exacerbate
within-country income inequality. The strength and direction of the effect depends
on the agricultural intensity of an economy. In high-agricultural-intensity countries,
climate anomalies that negatively impact the agricultural sector lower incomes at the
bottom end of the distribution and generate greater income inequality. Our results indi-
cate that a 1.5-SD increase in precipitation from average values has a 35-times-stronger
impact on the bottom income shares for countries with high employment in agriculture
compared to countries with low employment in the agricultural sector. Projections with
modeled future precipitation and temperature reveal highly heterogeneous patterns on a
global scale, with income inequality worsening in high-agricultural-intensity economies,
particularly in Africa. Our findings suggest that rainfall anomalies and the degree of
dependence on agriculture are crucial factors in assessing the negative impacts of climate
change on the bottom of the income distribution.

income inequality | climate change | precipitation

Robust evidence suggests that climate change will adversely affect economic and so-
cial conditions (1–3), impairing economic growth and hampering the development
of disadvantaged economies (4–8). Several studies have indeed projected cross-country
income inequality to increase in response to heterogeneous climate impacts, mitigation
policies, and adaptation potentials (9–11). However, the effects of climate change on the
distribution of income within national economies—i.e., within-country inequality—are
poorly understood (12). On the one hand, relatively poorer people, especially those living
in hotter climates, are among the most vulnerable to climate change (7, 13). On the
other hand, the effect of weather shocks varies widely between economic sectors (14, 15),
whose relative size starkly differs across countries and phases of development (16–18).
As a consequence, the same weather event can have different impacts on the income
distribution of countries with structurally different economies.

Agriculture is, by its very nature, one of the most exposed sectors to climate events
and—notwithstanding adaptation—is already experiencing large productivity losses
(19, 20), with potentially cascading effects on the macroeconomy (5, 14). Furthermore,
agricultural prices and yields have been identified as key channels through which
climate change will increase poverty (12). Nonetheless, the economic literature on the
determinants of within-country income inequality (21, 22) typically overlooks climate
anomalies as a potential source of increased disparities. More specifically, changing
temperatures and extreme weather events have been convincingly shown to heteroge-
neously affect aggregate income, leading to divergent growth trajectories (1, 3, 23).
The role of precipitation is still unclear and subject to debate (24, 25). Nonetheless, rainfall
anomalies are often indicated as a major risk factor (26), especially for poor individuals
in developing countries (27–29). Indeed, these households are not only often located
in flood-prone areas and highly vulnerable to droughts (30), but are also remarkably
dependent on income from rain-fed agriculture (31–33).

Our approach considers rainfall anomalies, along with temperature deviations, as
a potential source of increased within-country income inequality. We use methods
traditionally employed in econometric studies (5, 6) (Materials and Methods) to inves-
tigate the impact of local climate anomalies on the fraction of income earned by the
population below the median percentile. Income-share quantiles are routinely employed
to capture localized movements across the income distribution. They are usually utilized
as alternatives to summary measures (e.g., the Gini index), given their higher sensitiv-
ity to changes in the tails, such as for the very poor (34). We hypothesize that the
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Table 1. Estimated impacts of precipitation on the bottom-50%-income share, Models A0, A1, and A2

No agricultural intensity High vs. low agricultural intensity Continuous agricultural intensity
Model A0 A1 A2
Precipitation 0.002 (0.009) 0.032∗ (0.019) −0.033∗∗ (0.016)
Precipitation2 −0.002 (0.004) −0.014∗∗ (0.005) 0.013∗∗ (0.007)
AIL × Precipitation −0.041∗∗ (0.020)
AIL × Precipitation2 0.018∗∗∗ (0.006).
AI × Precipitation 0.001∗∗ (<0.001)
AI × Precipitation2 −(<0.001)∗∗ (<0.001)
Temperature effects � � �
Sample size 2,363 2,363 1,984
Fit quality (within R2) 0.4580 0.4767 0.2585

Clustered within-countries and heteroscedasticity robust SEs are in parentheses. AI, agricultural intensity. Polynomial of temperature and relative interaction terms are included
(temperature effects) but not reported, as they are never significant. ∗P < 0.10; ∗∗P < 0.05; ∗∗∗P < 0.01 (two-tailed). See SI Appendix, Table S5 for full results.

degree to which rainfall anomalies impact the distribution of
income depends on the degree of agricultural intensity of a
country, measured as the percentage of workers employed in
agriculture out of total employment. Indeed, economies heavily
dependent on the primary sector are inherently more exposed
to weather fluctuations. To the extent that precipitation impacts
agricultural income more than nonagricultural income, and with
bottom earners being largely dependent on the former, climate
anomalies can translate into a widening rich–poor gap in agri-
culturally intensive countries. By jointly modeling the response of
both between- and within-country income distribution to climate
change, our framework allows for a comprehensive accounting
of the effects of climate anomalies on present and projected
inequalities.

Precipitation Affects Income Distribution in
Countries That Are Heavily Dependent on
Agriculture

We start by modeling the response of the share of income earned
by the poorest 50% of the population to climate anomalies.
Given the highly right-skewed nature of income distribution,
bottom-50%-income shares are customarily employed as robust
indicators of movements in the poorest part of the popula-
tion (35–37), without incurring methodological and measure-
ment issues related to estimates for lower quantiles (38, 39)
(SI Appendix, Inequality Data and Measures). In our most general
setup, the inequality indicator depends on 1) a polynomial of
climate variables (population-weighted yearly average temperature
and total precipitation); 2) all time-invariant socioeconomic and
geographic factors that influence countries’ average values of the
dependent variable (captured by country fixed effects); 3) region-
specific macroeconomic shocks (captured by the interaction terms
between year fixed effects yt and regional dummies ri ); and 4)
the degree of country agricultural intensity AI (Materials and
Methods). We then employ econometric methods to estimate a set
of models with different specifications and a battery of robust-
ness checks (SI Appendix, Robustness). In particular, we identify
climate-related effects through deviations from country-specific
inequality levels shaped by institutional factors and from region-
specific macro trends.

Our baseline strategy is to split countries into two distinct
groups—high and low agricultural intensity (5, 6)—as captured
by the dichotomous variable AI L in Model A1. Grouping coun-
tries according to their relative position in the global distribu-
tion of agricultural employment shares has the main advantage
of parsimoniously accounting for heterogeneous effects across a

highly skewed distribution (SI Appendix, Fig. S1). Table 1 reports
our estimates of Model A1 (see also Fig. 1A). We find evidence
of an inverted-U-shaped relationship between precipitation and
bottom income shares for high-agricultural-intensity countries;
see also the solid line in Fig. 1A. In contrast, the coefficients
for the low-agricultural-intensity group are of opposite signs and
similar magnitude, indicating an almost absent effect of rain-
fall; see also the dashed line in Fig. 1A. Indeed, extreme levels
of precipitation exacerbate income inequality only in countries
whose employment is highly concentrated in agriculture. No-
tably, no statistically significant effect is detected for temperature
(SI Appendix, Table S5), confirming rainfall as a key determinant
of agricultural incomes (28, 40). The central role of agricultural
intensity is evident from the estimates of Model A0 (Table 1).
Precipitation does not exert any statistically significant effect when
the grouping is removed. This highlights the nonlinear nature of
the relationship between precipitation and income distribution:
The estimated effect is stronger for extreme levels of rainfall, and
it primarily emerges in the right tail of the agricultural intensity
distribution.

Our findings are robust to a wide range of model specifications.
The baseline definition of countries with high agricultural
intensity—i.e., those above the 80th percentile of the global agri-
cultural employment share distribution—is conservative. In fact,
cutting the distribution at higher quantiles (e.g., countries above
the 90th percentile) delivers markedly stronger estimated effects
for the high-agricultural-intensity group. Conversely, cutoffs at
lower percentiles (e.g., the 75th percentile) yield substantially
unaltered estimations without reducing statistical uncertainty
(SI Appendix, Fig. S5 and Table S1). Furthermore, the results are
not exclusively driven by countries located at the very right end
of the distribution (see estimates for Model A1 when excluding
countries in the upper decile; SI Appendix, Fig. S5). Relevantly,
grouping countries along alternative dimensions—e.g., income
level or geographical region—delivers inconsistent and statistically
weak estimates, suggesting that agricultural intensity truly drives
our findings (SI Appendix, Table S10). Adopting alternative
income-inequality indicators—top-10% and top-10% to bottom-
50%-income-share ratios (36, 41)—grants qualitatively similar
evidence (SI Appendix, Table S9). However, both measures
entail greater statistical uncertainty, as they reflect movements
in parts of the income distribution that are unlikely to be
affected by precipitation anomalies (e.g., top earners). Finally,
the results are robust to alternative formulations of region-
specific fixed effects (SI Appendix, Table S7), as well as to different
data sources (42) for the construction of our climate variables
(SI Appendix, Table S8).
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Fig. 1. Estimated impacts of precipitation on economic variables. (A) Estimated nonlinear impacts of population-weighted yearly total precipitation (in meters)
on the bottom 50% shares in high-agricultural-intensity countries (solid line) and in low-agricultural-intensity ones (dashed line). Histograms show the pooled
distribution of precipitation in the two groups. Vertical lines indicate precipitation for selected countries averaged over 1996 through 2010. Arrows represent
movements in average precipitation between the period 1980 through 1995 and the period 1996 through 2010 (Table 1 and SI Appendix, Table S5). Shaded areas
represent 90% confidence bands. SEs are clustered within countries and heteroscedasticity-robust. (B) As in A, but with per capita GDP growth as the dependent
variable (SI Appendix, Table S3). (C) As in A, but with per capita agricultural GDP growth as the dependent variable (SI Appendix, Table S4). (D) Estimated impacts
of precipitation on bottom 50% shares with continuous, time-varying agricultural intensity. Selected levels of agricultural intensity are shown (Table 1 and
SI Appendix, Fig. S4). (E) As in D, but with per capita GDP growth as dependent variable (SI Appendix, Table S3 and Fig. S3). In D and E, the constant term is fixed
to the average intercept in, respectively, A and B.

We conjecture that the nonlinear relationship between pre-
cipitation and income inequality arises from the interplay of
asymmetric climate impacts on agricultural and nonagricultural
incomes (5, 6) and the possible uneven distribution of bottom
earners across sectors of economic activity. To investigate this
hypothesis, we estimate two models analogous to Model A1
on two different dependent variables: per capita gross domestic
product (GDP) growth rates (Model B1) and per capita agricul-
tural GDP growth rates (Model C1). Our estimates indicate a
nonlinear, inverted-U-shaped relationship between precipitation
and agricultural GDP growth for countries with high agricul-
tural intensity and a remarkably less pronounced, yet concave,
relationship for countries with low agricultural intensity (Fig. 1C
and SI Appendix, Table S4). Furthermore, extreme levels of pre-
cipitation correspond to negative growth rates of agricultural in-
comes, especially in agriculturally intensive countries (40), where
rain-fed and small-farm agriculture vastly dominate farmland
activities (43). When turning to aggregate GDP growth, the
estimated effects of precipitation are qualitatively similar to those
for agricultural income, albeit considerably lower in magnitude
(Fig. 1B and SI Appendix, Table S3). More precisely, rainfall only
moderately affects low-agricultural-intensity countries, and it is
mostly associated with periods of positive GDP growth (25).
Instead, the effects are particularly large in high-agricultural-
intensity countries (4, 25). Since impacts on aggregate income are
disproportionately smaller than those on agricultural income, and

with bottom earners being largely dependent on the latter in high-
agricultural-intensity countries, climate anomalies can translate
into a widened rich–poor gap. Although disaggregated data are
not systematically available, evidence shows that bottom earners
in developing economies are indeed more frequently employed in
the agricultural sector (31, 32, 43). In addition, the bottom-50%-
income shares positively (negatively) correlate with agricultural
(aggregate) income per capita in agriculturally intensive countries
(SI Appendix, Table S2). Conversely, agricultural incomes in de-
veloped economies typically do not fall in the bottom half of the
distribution (44). Finally, we tested whether our estimated effects
could have been driven by the influence of climate change on
agricultural and food prices (12, 13) beyond income growth rates.
No robust or statistically significant impact was detected in our
sample (SI Appendix, Table S13), suggesting that the mechanism
hinges on altered productivity and output growth (19, 40).

We now relax the dichotomous grouping of countries to more
flexibly inspect the interaction between precipitation and agri-
cultural intensity. In our most general specification, we model
the bottom-50%-income shares (Model A2 in Materials and
Methods) and per capita GDP growth rates (model B2 in Mate-
rials and Methods) as functions of country-specific, time-varying
agricultural intensity. Table 1 shows that the response of income
inequality to precipitation in Model A2 is consistent with that in
Model A1: Higher agricultural employment is associated with in-
creasingly arched parabolas (Fig. 1D and SI Appendix, Table S5).
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Similarly, a nonlinear response to rainfall is observed for GDP
growth (Fig. 1E and SI Appendix, Table S3) and agricultural GDP
growth (SI Appendix, Table S4). The results are robust to the
removal of possible residual correlation among the error terms of
the three dependent variables (SI Appendix, Table S6).

Moving to the analysis of temperature, our results (SI Appendix,
Fig. S2 and Tables S3 and S4) confirm evidence of statistically
significant and nonlinear impacts on GDP and, more markedly,
on agricultural GDP growth (6, 8, 9). The absence of statistically
significant differences between high- and low-agricultural-
intensity countries suggests that the impact of temperature
deviations from long-term trends on economic activities entails
different mechanisms than rainfall anomalies do. At the same
time, the sign and the magnitude of coefficients capturing such
differential effects all point toward more pronounced impacts in
high-agricultural-intensity economies. Thus, we cannot rule out
the existence of such mechanisms for temperature anomalies as
well, and more fine-grained data would be needed to investigate
this issue with greater statistical power. Nonetheless, our results
are broadly consistent with the lack of a significant effect
of temperature changes on within-country income inequality
(SI Appendix, Table S5).

It Never Rains But It Pours: Climate Change
Might Reinforce Existing Disparities

We quantify the potential impacts of future precipitation
and temperature changes by combining previously estimated
nonlinear response functions (Models A2 and B2) with future
economic and climatic trends. To this end, we merge a
Representative Concentration Pathway (RCP) 8.5 future with
historical long-run (1991 through 2010) trends in output growth
and agricultural employment shares to obtain our baseline

projection scenario. Hence, we project deterministic paths for
the bottom-50%-income shares and GDP growth for our global
sample of countries (Models Ã2 and B̃2 in Materials and Methods).
The results are qualitatively consistent when considering a
modified baseline scenario that accounts for long-run trends in
income inequality (SI Appendix, Fig. S7) and five RCP–Shared
Socioeconomic Pathway (SSP) combinations (SI Appendix,
Figs. S9–S13 and Tables S18 and S19).

Given their relevance to income distribution, we start by ana-
lyzing the projected impacts of future precipitation only. Fig. 2A
shows the projected values at the 2080 through 2099 period for
both per capita GDP and the bottom-50%-income shares relative
to a projection with constant climate for each country–climate
model pair. Low-agricultural-intensity countries are projected to
experience relatively mild consequences on both domestic income
inequality and growth trajectories, with the bulk of country–
model pairs being concentrated around the origin in Fig. 2A.
This is due both to low vulnerability to precipitation changes
(Table 1) and modest projected changes in total annual rainfall
(SI Appendix, Table S17). However, for those cases where impacts
are nonnegligible, we find evidence of a trade-off between reduced
economic growth and increased income inequality. Countries
with high agricultural intensity show a diverse pattern, captured
by the bimodal distribution in the GDP-inequality space emerg-
ing from projections. For one cluster of countries, precipitation
over the century will lower levels of economic activity and increase
income inequality. A second cluster is projected to experience
greater economic growth and a slightly more equal distribution
of income, with the bottom 50% of earners increasing their
income share by 1.08% on average. Remarkably, the first sub-
group is primarily composed of relatively wet central African
economies characterized by a disproportionate projected increase
in precipitation (Figs. 2B and 3B and SI Appendix, Table S17).
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Fig. 2. Projected effects on the bottom-50%-income share and GDP per capita, evaluated at 2080 through 2099. (A) Projected percentage change in GDP
per capita (x axis, no temperature impacts) and bottom 50% share (y axis) with respect to a projection with constant climate. RCP 8.5, historical trends (1991
through 2010) in per capita GDP growth, and agricultural employment share are shown. Each point represents a climate model–country pair. International
Organization for Standardization (ISO) Alpha-2 codes are reported for selected country average effects. Shaded areas represent two-dimensional Gaussian
kernel density estimations of climate model–country pairs for distinct agricultural intensity groups. An analogous chart including temperature effects is provided
in SI Appendix, Fig. S8. (B) Average projected change (across climate models) in the bottom 50% share due to changes in precipitation, with respect to a projection
with constant climate. Historical trends (1991 through 2010) in agricultural employment share are shown. (C) Average projected change (across climate models)
in GDP per capita (p.c.) due to changes in precipitation and temperature, with respect to a projection with constant climate. Historical trends (1991 through
2010) in per capita GDP growth and agricultural employment share are shown.
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In these areas, which are currently already very poor and unequal
(SI Appendix, Fig. S1), climate change risks hampering the pro-
cess of economic development and exacerbating existing imbal-
ances. In turn, a delayed structural change of these economies
would keep their vulnerability high due to reliance on the primary
sector. The second subgroup is instead composed of dry countries
(SI Appendix, Table S17), which are projected to benefit from
future increases in rainfall. The estimated gains of bottom earners,
however, are limited (Figs. 2A and 3). Overall, the majority of
countries will experience worsened levels of income inequality
(Fig. 2B). When including the impact of future temperature on
economic growth, 86% of countries in our global sample are pro-
jected to become poorer with respect to a projection with constant
climate (Fig. 2C and SI Appendix, Fig. S8). Some countries will
become poorer in absolute terms (6) (SI Appendix, Table S20).
Only Russian and Scandinavian economies are projected to im-
prove GDP growth (6, 8, 45).

Uncertainty Analysis

Projected impacts may vary substantially across climate and so-
cioeconomic futures and, within each of them, as a result of
input variability. In our baseline scenario, uncertainty in projected
income inequality mainly affects the most adversely impacted
countries (Fig. 3). This is due to marked discordance about
future precipitation patterns across different climate models. For
example, in Sub-Saharan Africa, worst-case projections indicate
that income shares of the poorest 50% will shrink by more
than 10% as a result of rainfall changes, even though best-case
projections indicate a tiny, yet positive, effect. In all other regions,

and in developed economies in particular, the full range of impacts
is smaller and considerably more centered around the median
projections. Statistical uncertainty is generally low and affects only
6 (out of 101) countries. Comparing different projection scenar-
ios (SI Appendix, Figs. S9–S13 and Tables S18 and S19), we find
that the most negative impacts on both income inequality and per
capita GDP are retrieved in the SSP3–RCP8.5 future and mainly
affect the Middle East and Sub-Saharan Africa. In contrast, the
largest positive effects are retrieved in SSP2–RCP6.0 for income
inequality and SSP1–RCP2.6 for output per capita. This result
points to different climatic and economic drivers behind income
growth and income distribution. Finally, in the SSP5–RCP8.5
future, we find evidence of small effects of precipitation changes
and sizable adverse impacts of temperature. Given the structure
of our projections, economic growth is associated with lower agri-
cultural intensity (SI Appendix, Projections). This clearly suggests
that a sustainable (i.e., low carbon) industrialization path can be a
promising strategy to jointly mitigate both the temperature- and
precipitation-related impacts of climate change.

Overall Effects on Global Income Inequality

Leveraging our framework, which jointly accounts for the evo-
lution of aggregate income and its domestic distribution, we
are able to reconcile the impacts of projected climate change
on both within- and between-country income inequality. Fig. 4
shows the global distribution of income, built by exploiting
projected GDP levels and income shares. Projections point to a
24% [23%, 25%] increase in global inequality, measured through
the Gini index, as a consequence of future climate change—i.e.,

Fig. 3. Distributions of projected effects on the bottom-50%-income share (evaluated at 2080 through 2099) across climate models, by country. Projected
percentage change with respect to a projection with constant climate is shown. RCP 8.5, historical trends (1991 through 2010) in agricultural employment
share are shown. We show boxplots grouped by macroregion. Lower and upper hinges correspond to 25th and 75th percentiles, respectively; middle lines to
medians; and lower and upper whiskers to 10th and 90th percentiles, respectively. ISO Alpha-2 codes are reported for each country. Dryer/wetter climate signs
indicate whether all climate models agree on the direction of projected changes in yearly total precipitation with respect to 1991 through 2010 averages, for
each country. The statistical uncertainty sign indicates countries whose effects are not statistically significant at the 5% level, when accounting for statistical
uncertainty only (and not for climate uncertainty). See SI Appendix, Simulated Effects on Poverty for impacts on poverty implied by our estimates.

PNAS 2022 Vol. 119 No. 43 e2203595119 https://doi.org/10.1073/pnas.2203595119 5 of 8

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 1
29

.1
99

.2
08

.2
29

 o
n 

A
ug

us
t 2

1,
 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

12
9.

19
9.

20
8.

22
9.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203595119/-/DCSupplemental
https://doi.org/10.1073/pnas.2203595119


Global High agricultural intensity countries

0.00

0.25

0.50

0.75

G
in

i I
nd

ex

Precipitations Macroeconomic trends Temperature

Fig. 4. Evolution of income inequality (Gini coefficients), globally and for
high-agricultural-intensity countries, under different scenarios. The “2080-99
(τ = 0, δ = 0)” scenario accounts for precipitation changes alone. The
“2080-99 (τ = 0)” scenario accounts for precipitation changes along with
trends in per capita GDP and agricultural employment shares. The “2080-99”
scenario additionally accounts for temperature changes. Initial refers to
historical averages (1991 through 2010). Multiplying projected bottom-50%-
income shares by projected per capita GDP, we retrieve the per capita income
for classes below and above the median (bottom 50% and top 50%), under
the assumption of GDP being distributed as pretax national income. Gini
coefficients are computed for each climate model and then averaged; they
account for both within- and between-country income distribution. Error bars
show 95% confidence bands. Two outlier countries (Bosnia and Herzegovina
[BA] and Equatorial Guinea [EQ]) with highest average historical per capita
GDP growth rates are excluded from the calculation.

precipitation and temperature—and trends in economic variables.
The upsurge is remarkably higher for agriculturally intensive coun-
tries. Notably, precipitation anomalies alone explain 43% [41%,
45%] of the overall effect within this group of countries, with the
Gini index surging from 0.48 to 0.64. Investigating global income
inequality across SSP–RCP scenarios (SI Appendix, Fig. S14), it
becomes apparent that achieving growth and industrialization in
today’s agriculturally intensive countries will substantially curb
their vulnerability to future precipitation changes. Nonetheless,
a fossil-fuel-based development pathway (SSP5–RCP8.5 future)
will more than offset any gain obtained through structural change
(as opposed to an SSP1–RCP2.6 scenario).

Conclusions

We provide an assessment of the relationship between climate
anomalies, aggregate income, and its national distribution in
a global sample of countries. Utilizing econometric techniques
usually employed in the climate-economics literature, we uncover
nonlinear impacts of precipitation on the bottom-50%-income
shares, with extreme (low or high) levels of rainfall exacerbating
within-country income inequality. Such impacts are particularly
severe in countries that heavily rely on the primary sector,
whereas they are modest in developed countries. Projected
climate anomalies will further increase inequality in the global
distribution of income, especially among the most agriculturally
intensive countries. Crucially, in contrast to previous studies (6,
9), this result is found by jointly accounting for both within-
and between-country income distribution. Further extensions of
our analysis will require increased availability of inequality data
disaggregated by sector of economic activity, regional information
on precipitation spells and extreme rainfall events, and improved
precipitation projections by climate models.

Our results support three conclusions. First, rainfall changes
can considerably impair the distribution of income and hamper
the process of economic growth. Such effects are much stronger
in agriculturally intensive countries and may further increase their

vulnerability to future precipitation patterns, possibly triggering
a vicious cycle. Second, the materiality of climate risks calls for
urgent action to support the processes of sustainable economic
development and structural change of agriculturally intensive
economies, which could alleviate the direct impacts of climate
change beyond improving well-being (46). Third, fighting income
inequality should gain additional momentum in countries that are
most exposed to climate change.

Materials and Methods

Data and Code. We consider economic and climate variables observed at an
annual frequency between 1980 and 2010 in 101 countries for which we have
information on our main income-inequality indicator. Data on within-country
income distribution are retrieved from the World Inequality Database (47). We
employ measures based on market national income (pretax and transfers) to
exclude any policy-related confounding factors—e.g., agricultural subsidies. Cli-
mate variables from ref. 6 comprehend population-weighted total precipitation
and average temperature. Additional climate variables have been retrieved from
ref. 42. Historical and projected unweighted climate variables are obtained from
the 16 climate models selected by the Coupled Model Intercomparison Project
5—as provided by the World Bank Climate Change Knowledge Portal—to ensure
comparability among model outcomes. See SI Appendix, Table S14 for the full list
of models. Macroeconomic variables, such as agricultural and total per capita GDP
and employment shares in agriculture, were retrieved from World Bank Open
Data. Data on SSPs were retrieved from the SSP database (48). See SI Appendix A
for a discussion on inequality-data quality. Data and code for our analyses are
available at https://github.com/CoMoS-SA/climate inequality.

Econometric Models. All dependent variables Y ∈ {bs, g, a}—bottom 50%
share of national income, per capita GDP growth and per capita agricultural
GDP growth, respectively—are modeled as functions of climate variables C and
agricultural intensity AI, a measure based on the share of workers employed in
the agricultural sector:

Y = f(C, AI). [1]

For each country i in year t, we consider both annual total precipitation (Pit)
and yearly average temperature (Tit), each entering as a quadratic polynomial
function (6). Thus, we use the compact notation Cω

jit with ω ∈ {1, 2} and j ∈
{T , P}. AI represents either a dichotomous or a continuous variable, depending
on the specification. We estimate a set of models investigating the impact of
locally exogenous, short-term climate variations on all our variables of interest (Y).
In the first model, A0, the share of income received by the poorest bottom 50% of
the population does not consider the impact of agricultural intensity (AI = 0):

bsit = α+
∑

j,ω

βω
j Cω

jit + μi + ytri + εit , [A0]

where μi are country fixed effects, accounting for all time-invariant socioeco-
nomic and geographical factors, while region-specific macroeconomic shocks are
captured by year fixed effects (yt) multiplied by regional dummies (ri). Regions
are those used in ref. 5, with an additional subdivision of Sub-Saharan Africa,
due to its high heterogeneity (SI Appendix, Table S7). In a second, more general
specification (Model A1), we group countries according to their relative position
in the global distribution of agricultural intensity. This is achieved by interacting
all climate terms with the country-specific, time-invariant dummy variable AIL

i :

bsit = α+
∑

j,ω

(βω
j + γω

j AIL
i )Cω

jit + μi + ytri + εit , [A1]

where AIL
i identifies countries belonging to the low-agricultural-intensity group,

defined as the set of countries characterized by an average share of workers
employed in the agricultural sector below a given global quantile. Robustness
checks with varying cutoffs are included in SI Appendix, Fig. S5. Our most general
specification (Model A2) encompasses a continuous, time-varying term (AIit) that
identifies agricultural intensity for each country i in any year t:

bsit = α+
∑

j,ω

(βω
j + γω

j AIit)Cω
jit + μi + ytri + εit . [A2]
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We estimate analogous models using per capita GDP growth rates (g) and
per capita agricultural GDP growth rates (a) as dependent variables and in-
clude region-specific time trends (trt ri) (6). The results are robust to the in-
clusion of country-specific flexible trends in the place of region-specific ones
(SI Appendix, Tables S11 and S12). Thus, Model B1 for g with dichotomous spec-
ification for agricultural intensity is equal to:

git = α+
∑

j,ω

(βω
j + γω

j AIL
i )Cω

jit + μi + yt + trt ri + εit . [B1]

Model C1 for a is:

ait = α+
∑

j,ω

(βω
j + γω

j AIL
i )Cω

jit + μi + yt + trt ri + εit . [C1]

Finally, Model B2, with a continuous specification for agricultural intensity,
employed in projections (SI Appendix, Projections), is given by:

git = α+
∑

j,ω

(βω
j + γω

j AIit)Cω
jit + μi + yt + trt ri + εit . [B2]

Projections. Population-weighted climate projections were obtained by first
computing the compound growth rate of unweighted projected variables over
unweighted historical averages and subsequently imposing them on weighted
observed time series. For every model in our ensemble, we computed future
trajectories of country-level bottom-50%-income shares and per capita GDP,
exploiting estimates from our most general models, A2 and B2, respectively.
The projected levels of the bottom-50%-income shares depend solely on future
precipitation, since temperature does not have any statistically significant impact
(SI Appendix, Table S5). Hence, the law of motion is given by:

bsit = bsit−1 + ψAI
it (Ppit − Ppit−1), [Ã2]

where ψAI
it is the first derivative of Eq. A2 with respect to precipitation

(SI Appendix, Projections), and Ppit is projected precipitation. ψAI
it is a function

of agricultural employment shares (AIit), which are assumed to evolve according
to the observed country-specific average yearly variation. Projected levels of per

capita GDP are instead obtained following the methodology employed in ref. 6,
but considering precipitation in addition to temperature:

GDPpcP
it = GDPpcit−1(1 + δit + ηAI

it + τit), [B̃2]

where δit is the country-specific average yearly growth rate (SI Appendix,
Projections and Table S16 for scenarios with GDP trends using SSPs), ηAI

it is
the difference between the fitted polynomial for growth rates informed
with projected precipitation and the fitted polynomial for growth rates in-
formed with average historical precipitation, while τit is given by the anal-
ogous difference in fitted polynomials informed with projected temperature.
ηAI

it is also a function of agricultural employment shares (AIit) (SI Appendix,
Projections, Table S15, and Fig. S6). In Figs. 2 and 4, we consider different sce-
narios by selectively suppressing terms in Eq. B̃2 (e.g., τit = 0 for a scenario
with no temperature impacts). We show future impacts relative to a projection
with constant climate—i.e., only with trends in economic variables (ψAI

it = 0,
ηAI

it = 0, and τit = 0). Statistical uncertainty in Fig. 3 is assessed as follows: For
each coefficient estimate (β̂) in Model Ã2, we randomly draw 1,000 values (with
replacement) from a truncated normal distribution N(β̂, se(β̂)), where se(β̂) is
β̂’s SE. Truncation points are fixed at β̂ ± se(β̂). For each draw, we then construct
projected values, keeping climate projections fixed at their country averages.
Statistical significance is determined by constructing 95% CIs on all simulated
paths.

Data, Materials, and Software Availability. Data and replication codes have
been deposited in GitHub (https://github.com/CoMoS-SA/climate inequality)
(49). Previously published data were used for this work [Burke et al. (6) and Pretis
et al. (42, 48)].
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